Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2512-2528, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38335999

RESUMO

Insect defensins are a large family of antimicrobial peptides primarily active against Gram-positive bacteria. Here, we explore their hidden anti-Gram-negative bacterial potential via a nature-guided strategy inspired by natural deletion variants of Drosophila defensins. Referring to these variants, we deleted the equivalent region of an insect defensin with the first cysteine-containing N-terminus, and the last three cysteine-containing C-terminal regions remained. This 15-mer peptide exhibits low solubility and specifically targets Gram-positive bacteria. Further deletion of alanine-9 remarkably improves its solubility, unmasks its hidden anti-Gram-negative bacterial activity, and alters its states in different environments. Intriguingly, compared with the oxidized form, the 14-mer reduced peptide shows increased activity on Gram-positive and Gram-negative bacteria through a membrane-disruptive mechanism. The broad-spectrum activity and tolerance to high-salt environments and human serum, together with no toxicity to mammalian or human cells, make it a promising candidate for the design of new peptide antibiotics against Gram-negative bacterial infections.


Assuntos
Antibacterianos , Cisteína , Animais , Humanos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos/farmacologia , Defensinas/genética , Defensinas/farmacologia , Insetos , Mamíferos
2.
Front Microbiol ; 14: 1195156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405160

RESUMO

Peptide binders are of great interest to both basic and biomedical research due to their unique properties in manipulating protein functions in a precise spatial and temporal manner. The receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein is a ligand that captures human angiotensin-converting enzyme 2 (ACE2) to initiate infection. The development of binders of RBDs has value either as antiviral leads or as versatile tools to study the functional properties of RBDs dependent on their binding positions on the RBDs. In this study, we report two microbe-derived antibacterial defensins with RBD-binding activity. These two naturally occurring binders bind wild-type RBD (WT RBD) and RBDs from various variants with moderate-to-high affinity (7.6-1,450 nM) and act as activators that enhance the ACE2-binding activity of RBDs. Using a computational approach, we mapped an allosteric pathway in WT RBD that connects its ACE2-binding sites to other distal regions. The latter is targeted by the defensins, in which a cation-π interaction could trigger the peptide-elicited allostery in RBDs. The discovery of the two positive allosteric peptides of SARS-CoV-2 RBD will promote the development of new molecular tools for investigating the biochemical mechanisms of RBD allostery.

3.
Front Microbiol ; 14: 1118025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910184

RESUMO

Mutation and recombination are two major genetic mechanisms that drive the evolution of viruses. They both exert an interplay during virus evolution, in which mutations provide a first ancestral source of genetic diversity for subsequent recombination. Sarbecoviruses are a group of evolutionarily related ß-coronaviruses including human severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 and a trove of related animal viruses called SARS-like CoVs (SL-CoVs). This group of members either use or not use angiotensin-converting enzyme 2 (ACE2) as their entry receptor, which has been linked to the properties of their spike protein receptor binding domains (RBDs). This raises an outstanding question regarding how ACE2 binding originated within sarbecoviruses. Using a combination of analyses of phylogenies, ancestral sequences, structures, functions and molecular dynamics, we provide evidence in favor of an evolutionary scenario, in which three distinct ancestral RBDs independently developed the ACE2 binding trait via parallel amino acid mutations. In this process, evolutionary intermediate RBDs might be firstly formed through loop extensions to offer key functional residues accompanying point mutations to remove energetically unfavorable interactions and to change the dynamics of the functional loops, all required for ACE2 binding. Subsequent optimization in the context of evolutionary intermediates led to the independent emergence of ACE2-binding RBDs in the SARS-CoV and SARS-CoV-2 clades of Asian origin and the clade comprising SL-CoVs of European and African descent. These findings will help enhance our understanding of mutation-driven evolution of sarbecoviruses in their early history.

4.
Front Microbiol ; 13: 1053078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532476

RESUMO

Mutation-driven evolution of novel function on an old gene has been documented in many development- and adaptive immunity-related genes but is poorly understood in immune effector molecules. Drosomycin-type antifungal peptides (DTAFPs) are a family of defensin-type effectors found in plants and ecdysozoans. Their primitive function was to control fungal infection and then co-opted for fighting against bacterial infection in plants, insects, and nematodes. This provides a model to study the structural and evolutionary mechanisms behind such functional diversification. In the present study, we determined the solution structure of mehamycin, a DTAFP from the Northern root-knot nematode Meloidogyne hapla with antibacterial activity and an 18-mer insert, and studied the mutational effect through using a mutant with the insert deleted. Mehamycin adopts an expected cysteine-stabilized α-helix and ß-sheet fold in its core scaffold and the inserted region, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), forms an extended loop protruding from the scaffold. The latter folds into an amphipathic architecture stabilized by one disulfide bridge, which likely confers mehamycin a bacterial membrane permeability. Deletion of the sDBD remarkably decreased the ability but accompanying an increase in thermostability, indicative of a structure-function trade-off in the mehamycin evolution. Allosteric analysis revealed an interior interaction between the two domains, which might promote point mutations at some key sites of the core domain and ultimately give rise to the emergence of antibacterial function. Our work may be valuable in guiding protein engineering of mehamycin to improve its activity and stability.

5.
J Fungi (Basel) ; 8(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205928

RESUMO

Defensins are a class of cationic disulfide-bridged antimicrobial peptides (AMPs) present in many eukaryotic organisms and even in bacteria. They primarily include two distinct but evolutionarily related superfamilies (cis and trans). Defensins in fungi belong to the members of the cis-superfamily with the cysteine-stabilized α-helical and ß-sheet fold. To date, many fungal defensin-like peptides (fDLPs) have been found through gene mining of the genome resource, but only a few have been experimentally characterized. Here, we report the structural and functional characterization of Pyronesin4 (abbreviated as Py4), a fDLP previously identified by genomic sequencing of the basal filamentous ascomycete Pyronema confluens. Chemically, synthetic Py4 adopts a native-like structure and exhibits activity on an array of Gram-positive bacteria including some clinical isolates of Staphylococcus and Staphylococcus warneri, a conditioned pathogen inhabiting in human skin. Py4 markedly altered the bacterial morphology and caused cytoplasmic accumulation of the cell-wall synthesis precursor through binding to the membrane-bound Lipid II, indicating that it works as an inhibitor of cell-wall biosynthesis. Py4 showed no hemolysis and high mammalian serum stability. This work identified a new fungal defensin with properties relevant to drug exploration. Intramolecular epistasis between mutational sites of fDLPs is also discussed.

6.
EMBO Mol Med ; 14(2): e14499, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927385

RESUMO

The development of eukaryote-derived antimicrobial peptides as systemically administered drugs has proven a challenging task. Here, we report the first human oral actinomyces-sourced defensin-actinomycesin-that shows promise for systemic therapy. Actinomycesin and its homologs are only present in actinobacteria and myxobacteria, and share similarity with a group of ancient invertebrate-type defensins reported in fungi and invertebrates. Signatures of natural selection were detected in defensins from the actinomyces colonized in human oral cavity and ruminant rumen and dental plaque, highlighting their role in adaptation to complex multispecies bacterial communities. Consistently, actinomycesin exhibited potent antibacterial activity against oral bacteria and clinical isolates of Staphylococcus and synergized with two classes of human salivary antibacterial factors. Actinomycesin specifically inhibited bacterial peptidoglycan synthesis and displayed weak immunomodulatory activity and low toxicity on human and mammalian cells and ion channels in the heart and central nervous system. Actinomycesin was highly efficient in mice infected with Streptococcus pneumoniae and mice with MRSA-induced experimental peritoneal infection. This work identifies human oral bacteria as a new source of systemic anti-infective drugs.


Assuntos
Anti-Infecciosos , Defensinas , Actinomyces , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Defensinas/farmacologia , Defensinas/uso terapêutico , Humanos , Camundongos
7.
J Fungi (Basel) ; 7(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356932

RESUMO

Coronavirus Disease 2019 (COVID-19) elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is calling for novel targeted drugs. Since the viral entry into host cells depends on specific interactions between the receptor-binding domain (RBD) of the viral Spike protein and the membrane-bound monocarboxypeptidase angiotensin converting enzyme 2 (ACE2), the development of high affinity RBD binders to compete with human ACE2 represents a promising strategy for the design of therapeutics to prevent viral entry. Here, we report the discovery of such a binder and its improvement via a combination of computational and experimental approaches. The binder micasin, a known fungal defensin from the dermatophytic fungus Microsporum canis with antibacterial activity, can dock to the crevice formed by the receptor-binding motif (RBM) of RBD via an extensive shape complementarity interface (855.9 Å2 in area) with numerous hydrophobic and hydrogen-bonding interactions. Using microscale thermophoresis (MST) technique, we confirmed that micasin and its C-terminal γ-core derivative with multiple predicted interacting residues exhibited a low micromolar affinity to RBD. Expanding the interface area of micasin through a single point mutation to 970.5 Å2 accompanying an enhanced hydrogen bond network significantly improved its binding affinity by six-fold. Our work highlights the naturally occurring fungal defensins as an emerging resource that may be suitable for the development into antiviral agents for COVID-19.

8.
Mol Biol Evol ; 38(11): 5175-5189, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320203

RESUMO

Antimicrobial peptides (AMPs) have been considered as the alternatives to antibiotics because of their less susceptibility to microbial resistance. However, compared with conventional antibiotics they show relatively low activity and the consequent high cost and nonspecific cytotoxicity, hindering their clinical application. What's more, engineering of AMPs is a great challenge due to the inherent complexity in their sequence, structure, and function relationships. Here, we report an evolution-based strategy for improving the antifungal activity of a nematode-sourced defensin (Cremycin-5). This strategy utilizes a sequence-activity comparison between Cremycin-5 and its functionally diverged paralogs to identify sites associated with antifungal activity for screening of enhanceable activity-modulating sites for subsequent saturation mutagenesis. Using this strategy, we identified a site (Glu-15) whose mutations with nearly all other types of amino acids resulted in a universally enhanced activity against multiple fungal species, which is thereby defined as a Universally Enhanceable Activity-Modulating Site (UEAMS). Especially, Glu15Lys even exhibited >9-fold increased fungicidal potency against several clinical isolates of Candida albicans through inhibiting cytokinesis. This mutant showed high thermal and serum stability and quicker killing kinetics than clotrimazole without detectable hemolysis. Molecular dynamic simulations suggest that the mutations at the UEAMS likely limit the conformational flexibility of a distant functional residue via allostery, enabling a better peptide-fungus interaction. Further sequence, structural, and mutational analyses of the Cremycin-5 ortholog uncover an epistatic interaction between the UEAMS and another site that may constrain its evolution. Our work lights one new road to success of engineering AMP drug leads.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Candida albicans/genética , Testes de Sensibilidade Microbiana , Peptídeos , Engenharia de Proteínas
9.
Mol Biol Evol ; 37(11): 3149-3164, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556211

RESUMO

The growing resistance of insects to chemical pesticides is reducing the effectiveness of conventional methods for pest control and thus, the development of novel insecticidal agents is imperative. Scorpion toxins specific for insect voltage-gated sodium channels (Navs) have been considered as one of the most promising insecticide alternatives due to their host specificity, rapidly evoked toxicity, biodegradability, and the lack of resistance. However, they have not been developed for uses in agriculture and public health, mainly because of a limited understanding of their molecular and evolutionary basis controlling their phylogenetic selectivity. Here, we show that the traditionally defined insect-selective scorpion toxin LqhIT2 specifically captures a prey Nav through a conserved trapping apparatus comprising a three-residue-formed cavity and a structurally adjacent leucine. The former serves as a detector to recognize and bind a highly exposed channel residue conserved in insects and spiders, two major prey items for scorpions; and the latter subsequently seizes the "moving" voltage sensor via hydrophobic interactions to reduce activation energy for channel opening, demonstrating its action in an enzyme-like manner. Based on the established toxin-channel interaction model in combination with toxicity assay, we enlarged the toxic spectrum of LqhIT2 to spiders and certain other arthropods. Furthermore, we found that genetic background-dependent cavity shapes determine the species selectivity of LqhIT2-related toxins. We expect that the discovery of the trapping apparatus will improve our understanding of the evolution and design principle of Nav-targeted toxins from a diversity of arthropod predators and accelerate their uses in pest control.


Assuntos
Proteínas de Insetos/antagonistas & inibidores , Venenos de Escorpião/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Defensinas/química , Defensinas/genética , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Controle de Insetos , Conformação Proteica , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Especificidade da Espécie
10.
Mol Biol Evol ; 36(2): 365-375, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566652

RESUMO

The bioactive sites of proteins are those that directly interact with their targets. In many immunity- and predation-related proteins, they frequently experience positive selection for dealing with the changes of their targets from competitors. However, some sites that are far away from the interface between proteins and their targets are also identified to evolve under positive selection. Here, we explore the evolutionary implication of such a site in scorpion α-type toxins affecting sodium (Na+) channels (abbreviated as α-ScNaTxs) using a combination of experimental and computational approaches. We found that despite no direct involvement in interaction with Na+ channels, mutations at this site by different types of amino acids led to toxicity change on both rats and insects in three α-ScNaTxs, accompanying differential effects on their structures. Molecular dynamics simulations indicated that the mutations changed the conformational dynamics of the positively selected bioactive site-containing functional regions by allosteric communication, suggesting a potential evolutionary correlation between these bioactive sites and the distant nonbioactive site. Our results reveal for the first time the cause of fast evolution at nonbioactive sites of scorpion neurotoxins, which is presumably to adapt to the change of their bioactive sites through coevolution to maintain an active conformation for channel binding. This might aid rational design of scorpion Na+ channel toxins with improved phyletic selectivity via modification of a distant nonbioactive site.


Assuntos
Evolução Molecular , Venenos de Escorpião/genética , Escorpiões/genética , Seleção Genética , Adaptação Biológica , Substituição de Aminoácidos , Animais , Coevolução Biológica , Ratos
11.
Immunogenetics ; 71(1): 61-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280251

RESUMO

Defensins are small, cysteine-rich, cationic antimicrobial peptides, serving as effectors of the innate immune system and modulators of the adaptive immune system. They extensively exist in multicellular organisms and are divided into cis and trans according to their disulfide bridge connectivity patterns. It has been proposed that these two types of defensins convergently originated from different ancestors. Here, we report the discovery of a structural signature involved in the formation of the cysteine-stabilized α-helix/ß-sheet (CSαß) fold of the cis-defensins in some trans-ß-defensins, with only one amino acid indel (CXC vs. CC. C, cysteine; X, any amino acid). The indel of the X residue in the structural signature provides a possible explanation as to why cis- and trans-defensins possess different folds and connectivity patterns of disulfide bridges formed in evolution. Although our attempt to convert the structure type of a present-day trans-defensin with the X residue deleted was unsuccessful due to the low solubility of the synthetic peptide, a combination of data from structural signature, function, and phylogenetic distribution suggests that these defensins may have descended from a common ancestor. In this evolutionary scenario, we propose that a progenitor cis-scaffold might gradually evolve into a trans-defensin after deleting the X residue in specific lineages. This proposal adds a new dimension to more deeply studying the evolutionary relationship of defensins with different folds and of other distantly related proteins.


Assuntos
Defensinas/química , Defensinas/genética , Evolução Molecular , Filogenia , Dobramento de Proteína , Estrutura Secundária de Proteína
12.
Zool Res ; 39(6): 431-436, 2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30084433

RESUMO

Three-finger toxins (TFTs) are well-recognized non-enzymatic venom proteins found in snakes. However, although TFTs exhibit accelerated evolution, the drivers of this evolution remain poorly understood. The structural complexes between long-chain α-neurotoxins, a subfamily of TFTs, and their nicotinic acetylcholine receptor targets have been determined in previous research, providing an opportunity to address such questions. In the current study, we observed several previously identified positively selected sites (PSSs) and the highly variable C-terminal loop of these toxins at the toxin/receptor interface. Of interest, analysis of the molecular adaptation of the toxin-recognition regions in the corresponding receptors provided no statistical evidence for positive selection. However, these regions accumulated abundant amino acid variations in the receptors from the prey of snakes, suggesting that accelerated substitution of TFTs could be a consequence of adaptation to these variations. To the best of our knowledge, this atypical evolution, initially discovered in scorpions, is reported in snake toxins for the first time and may be applicable for the evolution of toxins from other venomous animals.


Assuntos
Venenos de Serpentes/genética , Animais , Evolução Molecular , Variação Genética/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Venenos de Serpentes/metabolismo , Serpentes/genética
13.
FEMS Microbiol Lett ; 365(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961831

RESUMO

Peptides with the inhibitor cystine knot (ICK) motif are extensively present in animals and plants where they exert a diversity of biological functions. However, few studies have been undertaken on this class of peptides in fungi. In this work, we identify a total of 386 fungal ICK peptides and proteins containing this motif by computational data mining of fungal genome databases, which exhibit 14 different exon-intron structures. According to their domain architectures, these proteins are classified into three distinct structural types, including single domains, tandem repeat domains and fusion domains, in which six families belonging to single or tandem repeat domains show remarkable sequence similarity to those from animals and plants, suggesting their orthologous relationship. Extremely high molecular diversity in fungal ICKs might be attributable to different genetic mechanisms, such as gene/domain duplication and fusion. This work not only enlarges the number of ICK peptides in multicellular organisms, but also uncovers their complex evolutionary history in a specific lineage.


Assuntos
Fungos/genética , Peptídeos/química , Peptídeos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Evolução Molecular , Éxons , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/classificação , Fungos/metabolismo , Variação Genética , Genoma Fúngico , Íntrons , Peptídeos/metabolismo , Filogenia , Domínios Proteicos , Alinhamento de Sequência
14.
Toxins (Basel) ; 10(6)2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867003

RESUMO

On the basis of the evolutionary relationship between scorpion toxins targeting K⁺ channels (KTxs) and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546⁻559), we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K⁺ channels and bacteria) via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI) remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos/farmacologia , Venenos de Escorpião/química , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/genética , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
15.
Dev Comp Immunol ; 87: 90-97, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29894713

RESUMO

Drosomycin-type antifungal peptides (DTAFPs) are natural effectors of the innate immune system, which are restrictedly distributed in plants and ecdysozoans. Mehamycin is a bi-domain DTAFP (abbreviated as bDTAFP) firstly found in the Northern root-knot nematode Meloidogyne hapla. Here, we report its structural and functional features and the evolution of bDTAFPs in nematodes. Different from classical DTAFPs, mehamycin contains an insertion, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), located in a loop region of the drosomycin scaffold. Despite this, recombinant mehamycin likely adopts a similar fold to drosomycin, as revealed by the circular dichroism spectral analysis. Functionally, it showed some weak activity against three species of fungi but relatively stronger activity against seven species of Gram-positive bacteria, indicative of functional diversification between mehamycin and classical DTAFPs. By computational data mining of the nematode databases, we identified polymorphic genes encoding mehamycin and a new multigene family of bDTAFPs (named roremycins) from Rotylenchulus reniformis. A combination of data suggests that the origination of sDBDs from M. hapla and R. reniformis is a consequence of convergent evolution, in which some probably suffered positive selection during evolution. Our study may be valuable in understanding the role of these unique antimicrobial peptides in the innate immunity of nematodes.


Assuntos
Antifúngicos/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Nematoides/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/classificação , Antifúngicos/farmacologia , Evolução Molecular , Fungos/classificação , Fungos/efeitos dos fármacos , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas de Helminto/genética , Modelos Moleculares , Nematoides/genética , Peptídeos/química , Peptídeos/genética , Filogenia , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Tylenchoidea/genética , Tylenchoidea/metabolismo
16.
Amino Acids ; 50(8): 1025-1043, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29770866

RESUMO

Besides key roles in prey capture and predator defense, scorpion venom also functions as internal immune agents protecting the venom gland from infection and external immune agents cleaning saprophytic microbes from their own body surfaces. However, antimicrobials (typically antimicrobial peptides, AMPs) in the venom often exist in low abundance that might exclude their immune role alone, leaving an open question with regard to their in vivo biological function. Here, we report the bactericidal activity of seven peptides isolated from the scorpion Mesobuthus eupeus venom, including one classical α-helical AMP and five ion channel-targeted neurotoxins. This AMP of 49 amino acids (named Meucin-49) is a multifunctional molecule that displays a wide-spectrum and highly potent activity against Gram-positive and Gram-negative bacteria with strong hemotoxicity on scorpion's predators (i.e., mammals, lizards, and birds) and high insecticidal activity. Although the neurotoxins targeting voltage-gated sodium (Nav) and/or large conductance calcium-activated potassium (BK) channels showed only marginal activity towards several species of bacteria, they were capable of significantly potentiating the bactericidal potency of Meucin-49. This observation highlights, for the first time, the venom's antibacterial immune function mediated by a joint action between neurotoxins and AMPs. The findings that traditionally defined neurotoxins possess (synergistic) bactericidal activity, while the classical AMPs play predatory and defensive roles, provide new evidence in favor of a general and intrinsic multifunctionality of scorpion venom components.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Neurotoxinas/química , Neurotoxinas/farmacologia , Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Antibacterianos/imunologia , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Columbidae , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemolíticos/química , Hemolíticos/isolamento & purificação , Hemolíticos/farmacologia , Moscas Domésticas/efeitos dos fármacos , Humanos , Imunidade Inata , Lagartos , Camundongos , Neurotoxinas/imunologia , Neurotoxinas/isolamento & purificação , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Conformação Proteica , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
17.
Front Microbiol ; 9: 320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599756

RESUMO

Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKß1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.

18.
Toxins (Basel) ; 9(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104247

RESUMO

The Kv1.2 channel plays an important role in the maintenance of resting membrane potential and the regulation of the cellular excitability of neurons, whose silencing or mutations can elicit neuropathic pain or neurological diseases (e.g., epilepsy and ataxia). Scorpion venom contains a variety of peptide toxins targeting the pore region of this channel. Despite a large amount of structural and functional data currently available, their detailed interaction modes are poorly understood. In this work, we choose four Kv1.2-targeted scorpion toxins (Margatoxin, Agitoxin-2, OsK-1, and Mesomartoxin) to construct their complexes with Kv1.2 based on the experimental structure of ChTx-Kv1.2. Molecular dynamics simulation of these complexes lead to the identification of hydrophobic patches, hydrogen-bonds, and salt bridges as three essential forces mediating the interactions between this channel and the toxins, in which four Kv1.2-specific interacting amino acids (D353, Q358, V381, and T383) are identified for the first time. This discovery might help design highly selective Kv1.2-channel inhibitors by altering amino acids of these toxins binding to the four channel residues. Finally, our results provide new evidence in favor of an induced fit model between scorpion toxins and K⁺ channel interactions.


Assuntos
Canal de Potássio Kv1.2/metabolismo , Venenos de Escorpião/metabolismo , Desenho de Fármacos , Canal de Potássio Kv1.2/química , Simulação de Dinâmica Molecular , Conformação Proteica , Venenos de Escorpião/química
19.
Biosci Rep ; 37(1)2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27913751

RESUMO

Defensins containing a consensus cystine framework, Cys[1]…Cys[2]X3Cys[3]…Cys[4]… Cys[5]X1Cys[6] (X, any amino acid except Cys; …, variable residue numbers), are extensively distributed in a variety of multicellular organisms (plants, fungi and invertebrates) and essentially involved in immunity as microbicidal agents. This framework is a prerequisite for forming the cysteine-stabilized α-helix and ß-sheet (CSαß) fold, in which the two invariant motifs, Cys[2]X3Cys[3]/Cys[5]X1Cys[6], are key determinants of fold formation. By using a computational genomics approach, we identified a large superfamily of fungal defensin-like peptides (fDLPs) in the phytopathogenic fungal genus - Zymoseptoria, which includes 132 structurally typical and 63 atypical members. These atypical fDLPs exhibit an altered cystine framework and accompanying fold change associated with their secondary structure elements and disulfide bridge patterns, as identified by protein structure modelling. Despite this, they definitely are homologous with the typical fDLPs in view of their precise gene structure conservation and identical precursor organization. Sequence and structural analyses combined with functional data suggest that most of Zymoseptoria fDLPs might have lost their antimicrobial activity. The present study provides a clear example of fold change in the evolution of proteins and is valuable in establishing remote homology among peptide superfamily members with different folds.


Assuntos
Ascomicetos/química , Defensinas/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Ascomicetos/genética , Cisteína/química , Cisteína/genética , Defensinas/genética , Evolução Molecular , Proteínas Fúngicas/genética , Genes Fúngicos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Alinhamento de Sequência
20.
Peptides ; 98: 43-50, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27578329

RESUMO

Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50∼26µM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (∼100µM).


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Venenos de Escorpião/farmacologia , Animais , Cisteína/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Sequências Hélice-Alça-Hélice , Oócitos , Esporos Fúngicos/efeitos dos fármacos , Relação Estrutura-Atividade , Xenopus laevis , Leveduras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...